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In this work, we examine the fluctuation of the intensity and the phase of an NMR signal during repetition
of experiments and investigate possibilities of using these information to judge suspicious peaks, whose
true colors may be noises or genuine signals. We firstly analyze the intensity and the phase of an NMR
signal separately, and show that for the accumulated spectral profile the contribution of the intensity
is less than that of the phase. Secondly we show that we can de-noise a noisy spectrum by using the stan-
dard deviation of phase at each spectral point. We then compare the de-noising effect of the present
approach and that of the phase-covariance method proposed recently, which is an alternative method
of appreciating phase distribution. Finally, effects of the dispersion component are discussed.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The sensitivity of nuclear magnetic resonance (NMR) spectros-
copy is low. In many practical cases, resonance lines in the spec-
trum are buried in the noise, when the data is acquired only
once. To improve the signal-to-noise ratio (SNR), it is common to
accumulate a number of free induction decays (FIDs). When N FIDs
are added together, SNR is increased by

ffiffiffiffi
N
p

compared to that of the
single scan signal. Since this increase rate is rather slow, measure-
ments often require very large N, making experiments quite time
consuming. Historically, the conventional signal accumulation
scheme has been a natural choice, considering the limited data
storage space. On the other hand, recent progress in storage de-
vices has made separate data recording feasible, as demonstrated
by Ivchenko et al. in the context of multiplex phase cycling [1].

In this work, we propose to store the individual data separately
and statistically analyze the data. We show that such analysis gives
us additional information that can be used to process the data in a
more efficient manner than mere accumulation. In fact, we re-
cently proposed a signal analysis method for de-noising based on
phase correlation between the NMR signal and the excitation pulse
(the phase-covariance analysis [2]). In the following we analyze
the distribution of the intensity and phase of the data points in
terms of variance and covariance, and present their applications
to de-noising a noisy spectrum and elimination of spurious signals.

In this paper we propose two new NMR data processing meth-
ods, referred to as phase standard deviation weighting (PSDW) and
ll rights reserved.

. Takegoshi).
phase covariance weighting (PCW), and examine these methods
using experimental data, and show that PSDW and PCW are useful
to judge signals and noises.

2. Theory, results, and discussion

2.1. A model of a quadrature NMR signal and noise

A quadrature NMR FID of a single signal at X0 may be given by

s0ðtÞ ¼
M0 exp �iX0t � t

T2

� �
; ðt P 0Þ

0; ðt < 0Þ

(
; ð1Þ

where we assumed no noise involved and a Lorentzian lineshape
with the spin–spin relaxation time of T2. s0(t) is Fourier transformed
to give the spectrum written as

S0ðXÞ ¼
1ffiffiffiffiffiffiffi
2p
p

Z 1

0
M0 exp �iX0t � t

T2

� �
� expðiXtÞdt

¼ MðmÞ expð�i/0ðmÞÞ; ð2Þ

with m = X �X0, where M(m) and /0(m) are written as

MðmÞ ¼ M0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1

T2
2
þ m2

� �r ; ð3Þ

and

/0ðmÞ ¼ �Arc tanðT2mÞ; ð4Þ

respectively. At the center of the peak of S0(X)(X = X0), the phase
factor is zero (/0(0) = 0), while it reaches ±p/2 at the far envelope.
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Fig. 1. (a) Schematic illustration of a complex data point Ij(m) � exp (�i/j(m)), which
is represented by a sum of a signal I0(m) � exp (�i/0(m)), and a noise
dj

IðmÞ � expð�idj
/ðmÞÞ. (b) Statistical distribution of the point represented by the

standard deviation r/ of the phase characterizing the magnitude relation between
I0 and dj

I . The tone of the circle represents distribution of the noise.

Fig. 2. Pulse sequence for 13C high-resolution solid state NMR. The phase of the 90�
pulse is altered by 180� for each spectral unit. When standard deviation spectrum is
obtained, the phase / of the 13C CP phase is held in 0� and the FIDs with 90�x are
subtracted from those with 90��x in order to remove artifacts. When covariance
spectrum is obtained, the 13C CP phase / was varied by, e.g. 1� in each of the two
steps with the phase alternation of the 90� pulse.
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This phase is related to the dispersion (the imaginary) component
of the signal, and we shall hereafter refer to this phase as an intrin-
sic phase.

More generally, a quadrature accumulated NMR signal at a fre-
quency m may be given by the product of an intensity I(m) and a
phase factor as

SðmÞ ¼ IðmÞ � expð�ið/ðmÞ þ nðmÞÞÞ; ð5Þ

where /(m) is the intrinsic phase and n(m) represents the phase as-
cribed to the phase difference between the transmitter and the re-
ceiver systems and the frequency-dependent phase shift due to the
experimental time delays, etc. Since this phase can be removed by
the conventional phase correction, the phase n(m) is neglected here-
after for simplicity. The overline in Eq. (5) denotes the averaging
over the accumulation;

IðmÞ � expð�i/ðmÞÞ ¼ 1
N

XN

j¼1

ðIjðmÞ � expð�i/jðmÞÞÞ; ð6Þ

where Ij(m) and /j(m) are the intensity and the phase of the signal at
m in the j-th spectrum of the N accumulation. Each Ij(m) and /j(m) in-
cludes noise as

IjðmÞ � expð�i/jðmÞÞ ¼ I0ðmÞ � expð�i/0ðmÞÞ þ dj
IðmÞ � expð�idj

/ðmÞÞ; ð7Þ

where I0(m) and /0(m) are the intensity and the phase without noise,
and dj

iðmÞ and dj
/ðmÞ are the intensity and the phase of noise at m in

the j-th spectrum, respectively (Fig. 1a).
Fig. 1b describes two cases, I0 > dj

I and I0 K dj
I . When the inten-

sity of the signal is larger than the intensity of the noise, the appar-
ent distribution of the phase would be relatively small. For a pure
signal without the noise, the standard deviation r/ of the phase is
zero. On the other hand, the phase distribution and r/ would in-
crease with the noise. At frequencies where I0 = 0, only the noise
exists and r/ becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR p
�p /2d/=2p

q
¼ pffiffi

3
p . Hence, r/ at each fre-

quency carries information as to certainty about whether the sig-
nal exists. It may be also envisaged that the standard deviation
of the signal intensity rI would not be significantly different for
the signal and the noise.

2.2. Distribution of phase and intensity

In order to examine the distribution of the intensity and the
phase experimentally, we performed 13C NMR of a low-concentra-
tion mixture of D,L-alanine (3 wt.%) and glycine (0.7 wt.%) in KBr
powder. The conventional combined techniques of cross-polariza-
tion (CP) and decoupling sequence (Fig. 2) under magic-angle spin-
ning (MAS) of the sample was used to observe high-resolution 13C
solid state NMR spectra in 14 T with a repetition time of 20 s. We ap-
plied the conventional phase alternation for the 1st 90� pulse and
the pairs of FIDs were subtracted with each other to reduce artifacts
[3]. Total 1800 pairs of FIDs were collected separately and Fourier
transformed to obtain an array of spectra. Fig. 3b shows one of them,
showing that the present spectrum corresponds to the case of
I0 K dj

I . The accumulated spectrum is shown in Fig. 3a.
Firstly, we examined distributions of the intensity dI and phase

d/ of the pure noise. The dI values obtained from 100 noise points
indicated in Fig. 3a by two horizontal arrows (i.e. 1800 � 100 data
points) are plotted in Fig. 4.

As shown in Fig. 4, the distribution of dI obeyed the Rayleigh

distribution dI
r2

I
exp � d2

I
2r2

I

� �
[4–7], where rI is the standard devia-

tion. The vertical broken line represents the average noise intensity

IN ¼ 1
N

P
jd

j
I , which takes non-zero value. At a signal, the distribu-

tion of I(m) shifts to the right with a slight broadening and is repre-
sented by Nakagami–Rice distribution [4–7] (not shown). On the
other hand, the distribution of d/ shows a more apparent depen-



(a)

(b)

Fig. 3. 13C CPMAS spectra of polycrystalline mixture of glycine and D,L-alanine
obtained (a) by accumulating 1800 pairs of FIDs and (b) from a single pair of FID.
The region indicated in (a) contains 100 data points, which are analyzed in the
following discussion.

Fig. 4. A distribution of the intensity dI obtained from the 1800 � 100 data points in
the noise region. IN shown by dotted line represents the mean value of the intensity.

(a)

(b)

(c)

(d)

Fig. 5. Plots of (a) IðmÞ, (b) cosð/ðmÞÞ, (c) IðmÞ � cosð/ðmÞÞ, and (d) ðIðmÞ � INÞ � cosð/ðmÞÞ.
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dence. Indeed, d/ is uniform over �p 6 d/ 6 p for noise, while at
signal d/ shows a broad single peak centered at /0 as will be shown
in the next section.

Assuming that the intensity and the phase of the noise have no
correlation, we evaluated statistically the signal intensity and
phase individually. We compared the averaged absorption signal
IðmÞ � cosð/ðmÞÞ given by Eq. (6) (Fig. 3a) with the averaged signal
intensity IðmÞ (Fig. 5a), the averaged phase cosð/ðmÞÞ (Fig. 5b), and
their product IðmÞ � cosð/ðmÞÞ (Fig. 5c). The large peak of IðmÞ at the
center is ascribed to the DC-offset. We found that separate accu-
mulation of the intensity and the phase does not distort the spec-
trum significantly (compare Figs. 3a and 5c). It is interesting to
note that cosð/ðmÞÞwas quite similar to the accumulated spectrum,
but IðmÞ was not. This is because, as the SNR in a single spectrum
was low in the present case (see Fig. 3b), the distribution of the
intensity was dominantly determined by the noise and IðmÞ was
similar at any m. In other words, when the SNR of each FID is
low, IðmÞ is nearly constant and IðmÞ � cosð/ðmÞÞ is controlled by
cosð/ðmÞÞ. When the SNR of each FID is high, the contribution of
IðmÞ to the lineshape IðmÞ � cosð/ðmÞÞ should be appreciable. For such
a case, however, the tedious analysis of each FID for de-noising
would not be necessary.

Here we examine in passing whether one can reduce noise by
subtracting the average IN of I(m) from IðmÞ in the product. Fig. 5d
shows ðIðmÞ � INÞ � cosð/ðmÞÞ, which has apparently better SNR.
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However, the spectrum is significantly distorted and the small
peaks at around �60 ppm are attenuated considerably.

2.3. Phase variance and phase standard deviation

In Section 2.1 we discussed the standard deviation r/ of the
phase distribution for the two extreme cases of pure signal and
pure noise. Here we derive a general formula of r/ for a given
set of the signal intensity I0 and the noise intensity rI. For this pur-
pose we introduce a probability density function H(/), which is the
probability of finding the phase of m frequency point to be /. Then,
r/ can be represented as

r2
/ ¼

Z p

�p
Hð/ðmÞÞ/ðmÞ2d/ðmÞ �

Z p

�p
Hð/ðmÞÞ/ðmÞd/ðmÞ

� �2

: ð8Þ

In order to obtain H(/), we firstly express noise in the Cartesian
coordinate as dj

IðmÞ � expð�idj
/ðmÞÞ ¼ dj

xðmÞ � idj
yðmÞ, where dj

xðmÞ and
dj

yðmÞ are the x(real)- and y(imaginary)-components of noise,
respectively, and assume that both components follow the two-
dimensional normal distribution given by

fdðdxðmÞ; dyðmÞÞ ¼
1

2pr2
I

exp � dxðmÞ2

2r2
I

 !
exp � dyðmÞ2

2r2
I

 !
: ð9Þ

Here, we use dx(m) and dy(m) as variables to express distribution of
the x- and y-component of noise, respectively, and rI is the standard
deviation of fd(dx(m), dy(m)). Eq. (9) gives the probability density func-
tion whose origin is (I0(m), /0(m)). To calculate a probability density
function h(I(m), /(m)) for Ij(m) and /j(m), we shift the origin to (0, 0)
by substituting dx(m) and dy(m) as follows;

dxðmÞ ¼ IðmÞ cos /ðmÞ � I0ðmÞ cos /0ðmÞ ð10Þ

and

dyðmÞ ¼ IðmÞ sin /ðmÞ � I0ðmÞ sin /0ðmÞ; ð11Þ

where I(m) and /(m) are the variables corresponding to Ij(m) and
/j(m), respectively. By putting Eqs. (10) and (11) into Eq. (9), we
have

hðIðmÞ;/ðmÞÞ ¼ 1
2pr2

I

exp �ðIðmÞ cos /ðmÞ � I0ðmÞ cos /0ðmÞÞ
2

2r2
I

 !

� exp �ðIðmÞ sin /ðmÞ � I0ðmÞ sin /0ðmÞÞ
2

2r2
I

 !

¼ 1
2pr2

I

exp �ðI0ðmÞ � IðmÞ cos D/ðmÞÞ2 þ ðIðmÞ sin D/ðmÞÞ2

2r2
I

 !
; ð12Þ

where D/(m) = /(m) � /0(m). Note here that the shift of the origin in-
duces the apparent frequency dependence into the probability den-
sity function.

The probability density function for phase H(/j(m)) is given by

Hð/ðmÞÞ ¼
Z 1

0
IðmÞhðIðmÞ;/ðmÞÞdIðmÞ

¼ 1
2pr2

I

exp � I0ðmÞ2

2r2
I

sin2 D/jðmÞ
 !

�
Z 1

0
IðmÞ � exp �

ðIðmÞ � I0ðmÞ cos D/jðmÞÞ
2

2r2
I

 !
dIðmÞ

¼ 1
2p

exp �RðmÞ2

2

 !
þ

RðmÞ cos D/jðmÞ
2
ffiffiffiffiffiffiffi
2p
p

� exp �RðmÞ2

2
sin2 D/jðmÞ

 !

� 1þ erf
RðmÞ cos D/jðmÞffiffiffi

2
p

� �� �
; ð13Þ
where R(m) is a ratio between the pure signal intensity I0(m) and the
standard deviation of noise rI R(m) = I0(m)/ri), which represents the
SNR at m. The distribution depends solely on R(m), and to appreciate
its dependence, we calculated H(/(m)) for R(m) = 0.1, 1.0, and 10 and
plotted Fig. 6a–c, respectively. For small R(m), H(/(m)) shows a broad
distribution around /0(m) with the baseline determined by the first
term in Eq. (13), and for R(m)� 1,H(/(m)) becomes a Gaussian-like
distribution.

In Fig. 7, we plot r/(m) calculated for several R values; for a pure
noise (R = 0), we have r/ðmÞ ¼

R p
�p

/2

2p d/ ¼ pffiffi
3
p (we define the value

pffiffi
3
p as rN

/ and use it below), which decays asymptotically to zero
for R =1 (a pure signal).

Fig. 8 shows the distribution of /(m) obtained from the experi-
mental data used in the previous section. Fig. 8a and b shows the
distribution of the phase at �86.2 ppm (a signal) and 150 ppm
(noise). The distribution at the signal is similar to H(/(m)) calcu-
lated for R = 1.0 (Fig. 6b). This small R value is consistent with
the poor SNR in each spectrum (Fig. 3b). The distribution of /(m)
for the noise area is flat as expected.
Fig. 6. The phase distribution function H(/(m)) for R(m) = (a) 0.1, (b) 1.0, and (c) 10.



(a)

(b)

Fig. 8. The distribution of the phase /(m) at (a) the peak, �86.2 ppm and (b) the
noise area, around 150 ppm.
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The standard deviation r/(m) is calculated by using the distribu-
tion of /(m) obtained for each m with /0(m) calculated from the
accumulated spectrum at each point. To compare with the accu-
mulated spectrum (Fig. 3a), we plot 1/r/(m) instead of r/(m) in
Fig. 9a. The 1/r/(m) plot resembles the accumulated spectrum.
We then use 1/r/(m) as a weighting factor of the accumulated spec-

trum as SðmÞ � 1
r/ðmÞ

��� ���, which is shown in Fig. 9b. Apparently such

weighting does not suppress noise. This is because the 1/r/(m) va-
lue at noise is large ca. 0.551 and is not significantly different from
those at signals (0.595–0.878). Here we introduce a new weighting
factor, referred to as a measure of certainty, which is plotted in
Fig. 9c, and is defined as

qr/
¼ 1� r/ðmÞ

rN
/

¼ 1�
ffiffiffi
3
p

r/ðmÞ
p

: ð14Þ

The measure of certainty qr/
is zero for a noise and one for a

pure signal. We then use the measure of certainty as a weighting
factor of the accumulated spectrum as

SPSDWðmÞ ¼ SðmÞ � jqr/
j; ð15Þ

which we shall refer to as a phase-standard-deviation weighted
(PSDW) NMR spectrum, and the resulting spectrum is shown in
Fig. 9d. Appreciable de-noising is achieved.

In the following, we compare the performance of the present
analysis with the phase-covariance analysis [2]. However, before
comparison, we shall briefly describe the phase-covariance
analysis.
2.4. Phase covariance between the pulse and the signal

In the phase-covariance scheme [2], an array experiment is per-
formed by incrementing the phase wj of the rf pulse, and the cor-
relation between the spectral and the rf phases is examined in
terms of the covariance. A quadrature NMR signal at a j-th exper-
iment may be given by introducing the rf phase factor of the j-th
experiment wj in Eq. (5) as

SjðmÞ ¼ IðmÞ � expð�ið/ðmÞ þ wjÞÞ: ð16Þ

Similar to the conventional signal accumulation, the N FIDs are
accumulated after taking the corresponding rf phase shift
wj(j = 1� � �N) into account; the accumulated FID is Fourier trans-
formed to produce the NMR spectrum S(m). In addition to the con-
ventional procedure, each FID signal is Fourier transformed
separately to produce N NMR spectra Sj(mi). Practically, we deter-
mine the 0th and 1st order phase correlation values from the accu-
Fig. 7. R dependence of the standard deviation r/(m) of the phase.
mulated spectrum S(m). These phase values are used to correct each
spectrum and the phase pj(m) = /(m) + wj of each spectral point m in
the j-th spectrum is deduced.

Fig. 10a shows two-dimensional distribution of (p(m), w) for
/(m) = 0 and R(m) = 1.0. Since pj(m) values obtained from experimen-
tal data include noise, observed (pj(m), wj) pairs at the center of a
signal (/(m) = 0) would ideally distribute along the diagonal line.
The cross-section at wj is the phase probability density function
g(pj(m), wj) given by

gðpjðmÞ;wjÞ ¼ Hð/ðmÞ ¼ pjðmÞ � wjÞ=2p: ð17Þ

The normalized covariance, which we call the correlation coeffi-
cient, is calculated for each point according to

qðmÞ ¼

P
j
pjðmÞwj

N �
P

j
pjðmÞ
N �

P
j
wj

NffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j
ðpjðmÞ2Þ
N �

P
j
pjðmÞ
N

� �2
 !

�
P

j
ðw2

j Þ
N �

P
j
wj

N

� �2
 !vuut

: ð18Þ

Practically, however, one apparent problem may be noted, that
is, the (pj(m), wj) data at the corners (�p, +p) and (+p, �p) in
Fig. 10a does reduce the

P
jpj(m)wj term and thereby correlation

coefficient. The (pj(m), wj) data at the corners arise because of the
periodicity of angles. Instead of developing a theory for evaluating
a correlation factor in such a case, we transform (pj(m), wj) to
(Uj(m), Wj) as

UjðmÞ ¼ jpjðmÞj �
p
2

ð19Þ

and

Wj ¼ jwjj �
p
2
: ð20Þ

Fig. 10b illustrates the result of the transformation. The phase prob-
ability density function in this region g(Uj(m), Wj) is written as



(a)

(b)

(c)

(d)

Fig. 9. Comparison of (a) a plot of the inverse of the standard deviation 1/r/(m), (b)
the 1/r/(m) weighted spectrum SðmÞ � j 1

r/ðmÞ
j, (c) a plot of the measure of certainty of

the standard deviation qr/
, and (d) the PSDW NMR spectrum.

(a)

(b)

Fig. 10. (a) Distribution fraction of the pulse phase w and signal phase p(m) and (b)
that of w and /(m) calculated according to Eqs. (19) and (20) in the case of /0(m) = 0
or /0(m) = 0, and R(m) = 1.0.
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gðUjðmÞ;WjÞ ¼ g UjðmÞ þ
p
2
;Wj þ

p
2

� �
þ g �UjðmÞ �

p
2
;Wj þ

p
2

� �
þ g UjðmÞ þ

p
2
;�Wj �

p
2

� �
þ g �UjðmÞ �

p
2
;�Wj �

p
2

� �
: ð21Þ
The two-dimensional phase field (U(m), W) corresponds to a
(p(m), w) square folded along the p(m) = 0 and w = 0 lines. We refer
to this field as the folded field. The correlation coefficient qf(m) in
the folded field is written as

qf ðmÞ ¼

P
j
UjðmÞWj

N �
P

j
UjðmÞ
N �

P
j
Wj

NffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j
ðUjðmÞ2Þ

N �
P

j
UjðmÞ
N

� �2
 !

�
P

j
ðW2

j Þ
N �

P
j
Wj

N

� �2
 !vuut

: ð22Þ

In the phase-covariance analysis, we use the absolute value of
qf(m) as a weighting factor at m as

SPCWðmÞ ¼ jqf ðmÞjSðmÞ; ð23Þ

which we call a phase-covariance weighted (PCW) NMR spectrum.

2.5. Comparison of the phase-standard-deviation analysis and the
phase-covariance analysis

To examine the de-noising effect for both analyses, we carried
out 13C CPMAS experiments by intentionally adding an incoherent
noise to the receiver circuit. The receiver cable was coupled with
an additional signal from a frequency synthesizer which was not
synchronized with the NMR spectrometer. Further, to examine
the effects of these de-noising analyses to a small signal, we used
a shorter delay time of 10 s. As a consequence, the relative inten-
sity of glycine peaks was much smaller than that in previous sec-
tions. One of the paired-scan spectra is given in Fig. 11a, in
which the strong peak at 33.2 ppm is the introduced noise. The
13C CP phase / (Fig. 2) was varied by 1� step in each of the paired
FIDs with the 90� pulse phase alternation. For the PSDW analysis,



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11. 13C CPMAS spectra of polycrystalline mixture of glycine and L-alanine
measured by adding an additional incoherent frequency signal at 33.2 ppm. (a) The
spectrum obtained from a single FID. (b) The accumulated spectrum. (c) The
measure of certainty spectrum. (d) The PSDW NMR spectrum. (e) The correlation
coefficient spectrum. (f) The PCW NMR spectrum. The asterisks and arrows indicate
the noise at 33.2 ppm and the C@O signal of glycine at 72.6 ppm, respectively.

(a)

(b)

Fig. 12. (a) A distribution plot of /(m) and (b) a distribution pattern of (U(m), W) at
33.2 ppm.

Table 1
Peak area intensities in the SW(m), PSDW, and PCW spectra shown in Fig. 11. The peak
numbers correspond to those indicated in Fig. 11b, and the area intensities are
normalized by that of the incoherent noise (�).

Peak 1 2 3 4 5

SW(m) 2.030 0.417 4.302 0.978 4.484
PSDW 19.90 2.050 50.19 2.861 84.85
PCW 22.21 2.070 51.10 3.443 88.28
PSDW/SW(m) 9.803 4.916 11.67 2.925 18.92
PCW/SW(m) 10.94 4.964 11.88 3.520 19.69
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these 1� phase shifts were compensated by phase correction, while
for the PCW analysis, they were left to appreciate correlation. It is
worth nothing here that PSDW and PCW, as well as signal averag-
ing, use a common data array, so that all of these post processing
can be performed concurrently.

Fig. 11b shows the accumulated spectrum. Even with 1800 pairs
of FIDs, the noise introduced at 33.2 ppm still exists. Fig. 11c and e
are the measure of certainty and correlation coefficient, i.e., the
weighting factors of the PSDW spectrum and PCW spectrum,
respectively, and Fig. 11d and f are the PSDW spectrum and the
PCW spectrum. In both methods, the incoherent noise was effec-
tively eliminated. As shown in the magnified plots of the spectra,
the PCW resulted in better suppression of the incoherent noise
than PSDW. This may be explained as follows. Fig. 12a and b shows
the distribution of /(m) and the distribution pattern of (U(m), W) for
the huge noise at 33.2 ppm. In PSDW, the number of pairs of scans
(N = 1800) is not large enough to give a flat distribution of /(m). On
the other hand, the distribution pattern of (/(m), w) is compara-
tively more uniform, leading to a small correlation coefficient in



(a)

(b)

Fig. 13. (a) Distribution fraction of the pulse phase w and signal phase p(m) and (b)
that of W and U(m) calculated according to Eqs. (19) and (20) in the case of
/0(m) = p/2 or U0(m) = p/2, and R(m) = 1.0.
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the PCW approach. It follows that the phase-covariance analysis is
more robust for relatively small number of data arrays.

For the small C@O signal of glycine at 72.6 ppm (peak 2), desig-
nated by an arrow in Fig. 11, the peak was apparently reduced by
both methods. Nevertheless, its relative intensity to that of the
incoherent noise was still larger than in the case of the conven-
tional accumulation. Table 1 shows integrated peak normalized
by that of the incoherent noise. Since the weighted spectra corre-
spond to the power spectrum, we consider S(m)|S(m)| � Sw(m) for
the accumulated spectrum. In PSDW and PCW spectra, the large
peak 1, 3, and 5 are noticeably enlarged, the largest peak 5 become
about 20 times, and even the small peak 2 and 4, which are smaller
than the peak of incoherent noise peak in SW(m) spectrum, are en-
ough larger than incoherent noise peak, the peak 4 become about
three times. PSDW and PCW distort relative intensities, but they
are useful to judge signals and noises. More quantitative statistical
analysis on SNR of PSDW and PCW is underway and will be pub-
lished elsewhere.

Lastly, we point out two problems, which arise when analyzing
the intensity and the phase separately. The first one of them relates
to the use of the absolute intensity I(m) instead of the absorption-
corresponding lineshape. Since the former has a wider linewidth
than the latter, the measure of certainty for noises on the envelope
of a strong signal tends to be overestimated. For example, at the
frequency where the absorption intensity decays to 10%, the abso-
lute intensity decays only to 22%, resulting in a non-flat distribu-
tion for H(/(m)). The second one relates to the evaluation of the
effect of a non-zero /0(m) value when calculating the standard
deviation. This problem of the non-zero /0 is apparent for the
phase-covariance analysis with the folding as shown in Fig. 13,
illustrating for the case of /0 = p/2 the distribution for the full
(Fig. 13a) and the folded (Fig. 13b) fields, respectively. Since the
intensity for an absorption lineshape in the region of /0 = ±p/2 is
less prominent, the apparent correlation coefficient calculated
from the former case would leave noises in this region. The folding
makes the correlation coefficient at /0 = p/2 small (ideally zero)
and gives reasonable coefficient values at the whole envelope
region.

3. Conclusions

In this work, we examined two statistical approaches, namely,
phase standard deviation weighting (PSDW) and phase covariance
weighting (PCW) analysis for de-noising, and as a result the useful-
ness of their methods is verified. These methods are applicable to
many situations, regardless of the state of sample: solid or solution,
the dimension of the spectrum: 1D, 2D or more, and the pulse se-
quence. The present methods can be used with other de-noising
techniques [8,9]. PSDW and PCW distort relative intensities of sig-
nals favoring larger peaks, and cannot be applied to lineshape anal-
ysis or quantitative analysis. Nevertheless, they are useful
techniques to judge signals and noises, as demonstrated in the
elimination of the incoherent spurious signal. When broadcasting
radio waves contaminate NMR spectra, the present approach can
be a solution to get rid of them. Details of further examination
using simulations to show whether the limits of visible signal in
PSDW and PCW are weaker than that in classic accumulation or
not, data processing, and discussion of applicability to more
sophisticated pulse sequences will be presented elsewhere.
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